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Abstract
Expressions for the second and fourth sum rules of the heat current density
correlation function have been derived in an appropriate ensemble. The thermal
conductivity of Lennard-Jones fluids has been calculated using these sum rules
for the heat current density correlation function and the Gaussian form of
the memory function. It is found that the results obtained for the thermal
conductivity are in good agreement with the molecular dynamics simulation
results over a wide range of densities and temperatures. Earlier results obtained
using the energy current density correlation function are also discussed.

1. Introduction

A time correlation function (TCF) is a fundamental quantity for the study of transport properties
of fluids, as all the macroscopic atomic transport coefficients can be related to the TCF of
an appropriate dynamical variable through Green–Kubo expressions. Theoretically, a TCF is
generally evaluated using Mori’s equation of motion [1], which expresses the TCF in terms of
a memory function (MF). The MF formalism reduces the problem of calculation of the TCF
to that of the calculation of the corresponding MF. However, this procedure has the advantage
that one can develop a phenomenological model for the calculation of the MF and still preserve
the first few frequency sum rules which are exact properties of the TCF. Thus the knowledge
of the frequency sum rules is of prime importance in the calculation of transport properties.
In the past, the sum rules for the velocity autocorrelation function [2], transverse stress [3],
longitudinal stress [4, 5] and energy current density (ECD) [6, 7] correlation functions have
been derived. These sum rules have provided a reasonably good description of transport
coefficients like the self-diffusion, shear viscosity, bulk viscosity and thermal conductivity
of dense fluids. However, depending on the choice of ensemble there exist two different
but equivalent Green–Kubo expressions for the thermal conductivity. The first expression
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involves a time integral over the energy current density correlation function whereas the second
expression involves a time integral over the heat current density correlation (HCD) function.
The second expression containing the HCD correlation function has relevance to constant
temperature ensembles. Since sum rules are generally evaluated in the canonical ensemble,
it is more appropriate to consider the heat current density correlation function instead of the
ECD correlation function for theoretical studies which require the use of sum rules. Earlier we
evaluated [6] expressions for the zeroth, second and fourth sum rules of the ECD correlation
function in the canonical ensemble instead of the constant energy ensemble. MacDowell [8] has
derived the zeroth sum rule of the HCD correlation function and shown that it is different from
that of the ECD correlation function, when both are calculated in the canonical ensemble. He
further pointed out that the remaining second and fourth order sum rules required in transport
theory also need revision. In order to examine this point in the present work and to obtain
sum rules for the HCD correlation function we have evaluated the second and fourth sum rules
of the HCD correlation function in an appropriate ensemble. It is found after doing lengthy
algebra that the second and fourth order sum rules of the HCD correlation function are exactly
the same as those of the ECD correlation function when both are calculated in the canonical
ensemble. In order to correct our earlier results, the thermal conductivity of Lennard-Jones (LJ)
fluids over a wide range of temperature and density has been calculated using appropriate sum
rules for the HCD correlation function. It is found that the present results are better than those
obtained earlier using the sum rules in the canonical ensemble of the ECD correlation function
instead of the constant energy ensemble.

The layout of the paper is as follows. In section 2, we present the theory involved. Section 3
contains results and discussion. Concluding remarks are given in section 4.

2. Theory

The Green–Kubo expression for the thermal conductivity in the constant temperature ensemble
can be written [1] as

λ = 1

kBT 2V

∫ ∞

0
H (t) dt, (1)

where H (t) is called the HCD correlation function and is defined as

H (t) = 〈
J q

x (t)J q
x (0)

〉
. (2)

On the other hand, in the constant energy ensemble one has an equivalent expression [1] given
as

λ = 1

kBT 2V

∫ ∞

0
E(t) dt, (3)

where E(t) is called the ECD correlation function and is defined as

E(t) = 〈J e
x (t)J e

x (0)〉. (4)

The angular brackets in equations (2) and (4) represent corresponding ensemble averages. V ,
kB and T are the volume of the system, Boltzmann’s constant and the temperature, respectively.
For a system interacting through central forces, the HCD variable J q

x (t) can be written as

J q
x (t) = J e

x (t) − (e + P)

n

∑
k

vkx (t), (5)

where J e
x (t) is the energy current density given by the following expression:

J e
x (t) =

∑
i

[
vi x (t)

p2
i

2m
+ 1

2

∑
j

′
ui jvi x(t) − 1

2

∑
j

′ ∂ui j

∂ri j
r̂i j xri j · vi

]
. (6)
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Here

U = 1
2

∑
i, j

′ui j = 1
2

∑
i, j

u(|ri − r j |), (7)

is the potential energy and m represents the mass of each particle. The prime on the summation
denotes that i = j terms are excluded. rix and vi x are the x components of position and velocity,
respectively. pi is the momentum of the i th particle. Further, ri j = ri − r, and r̂i j = ri j/|ri j |
is a unit vector in the direction of ri j . The internal energy density, e, and pressure, P , in terms
of the pair potential, can be written as

e = 3
2 nkBT + 2πn2

∫ ∞

0
dr u(r)r 2g(r), (8)

and

P = nkBT − 2πn2

3

∫ ∞

0
dr

du(r)

dr
r 3g(r), (9)

where g(r) and n are the static pair correlation function and number density, respectively. Thus
we see that J q

x (t) and J e
x (t) differ in the presence of the last term in equation (5) representing

the enthalpy (average) current.
The short time expansions of H (t) and E(t) are given as

H (t) = H0 − H2
t2

2! + H4
t4

4! + · · · , (10)

and

E(t) = E0 − E2
t2

2! + E4
t4

4! + · · · , (11)

where H2n and E2n are the 2nth order sum rules and are also known as the frequency moments
of the spectral function for the HCD and ECD correlation functions, respectively.

The ensemble average involved in equation (2) can be written as

〈J q
x (t)J q

x (t)〉 = 〈J e
x (t)J e

x (t)〉 +
(

e + P

n

)2
〈∑

k

∑
k′

vkx (t)vk′ x(t)

〉

− 2

(
e + P

n

) 〈∑
k′

J e
x (t)vk′ x(t)

〉
. (12)

The expression for H0 can be obtained from the above equation and equation (2) by putting
t = 0 and evaluating the equilibrium average in the canonical ensemble. The method used in
the evaluation of the sum rules is the same as that used in [6], and gives

H0 = 〈 J̇ e
x (0) J̇ e

x (0)〉 − kBT

m
(e + P)2. (13)

The above expression for H0 is essentially the same as that obtained by MacDowell [8].
The expression for the second frequency sum rule of the HCD correlation function can be

obtained by evaluating the ensemble averages

H2 = 〈 J̇ q
x (0) J̇ q

x (0)〉. (14)

The ensemble averages involved in equation (14) can be written as

〈 J̇ q
x (0) J̇ q

x (0)〉 = 〈 J̇ e
x (0) J̇ e

x (0)〉 +
(

e + P

n

)2
〈∑

k

∑
k′

v̇kx v̇k′ x

〉

− 2

(
e + P

n

) 〈∑
k′

J̇ e
x (0)v̇k′ x

〉
. (15)
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Using equations (14) and (15) we get the expression for H2. The first term, 〈 J̇ e
x (0) J̇ e

x (0)〉, in
the above expression has already been calculated earlier [6]. We have calculated the last two
terms of equation (15) by using Yvon’s theorem and exploring the various combinations of
the indices involved in the expression. We have observed that in this way some of the terms
become zero and others corresponding to different combination of the indices cancel with each
other. This is demonstrated for a few terms in the appendix. Therefore, H2 becomes equal to
〈 J̇ e

x (0) J̇ e
x (0)〉, which has already been evaluated in the canonical ensemble.

The expression for the fourth frequency sum rules of the HCD correlation function can be
obtained as

H4 = 〈 J̈ q
x (0) J̈ q

x (0)〉. (16)

The ensemble average involved in equation (16) can be written as

〈
J̈ q

x (0) J̈ q
x (0)

〉 = 〈
J̈ e

x (0) J̈ e
x (0)

〉 +
(

e + P

n

)2
〈∑

k

∑
k′

v̈kx v̈k′ x

〉

− 2

(
e + P

n

) 〈∑
k′

J̈ e
x (0)v̈k′ x

〉
. (17)

In this case also, after following the same procedure as was used in the calculations of second
sum rule and after lengthy algebra, it has been found that all such terms cancel with each
other under the pair potential approximation except that of 〈 J̈ e

x (0) J̈ e
x (0)〉. Thus, it is noted

that the second and fourth sum rules are the same as those obtained for E(t) in the canonical
ensemble earlier by us [6]. However, the change involved in the zeroth sum rule will affect the
values of the thermal conductivity obtained earlier. The theory adopted to calculate the thermal
conductivity in our earlier work is therefore briefly explained below.

The time evolution of H (t) can be expressed through the generalized Langevin equation
as

dH (t)

dt
+

∫ t

0
dτ M1(t − τ )H (τ ) = 0, (18)

where M1(t) is the first order MF. Defining the Fourier–Laplace transform of H (t) as

H̃ (ω) = i
∫ ∞

0
exp(iωt)H (t) dt, (19)

equation (1) can be written as

λ = −(i/V kBT 2)H̃(0). (20)

H̃ (0) can be obtained from equation (18) once we know the form of the MF. To compare the
present results with our earlier results [7], we prefer to use the Gaussian form of the MF given
as

M1(t) = δ1 exp(−δ2t2/2). (21)

In the above equations δ1 and δ2 are related to the frequency sum rules of the HCD correlation
function up to the fourth order and are given as

δ1 = H2/H0, δ2 = H4/H2 − H2/H0. (22)

The choices of the parameters of the MF are such that the sum rules up to fourth order are
exactly satisfied. The expression for λ thus obtained can be written as

λ =
(

2

π

)1/2 (
n

kBT 2

)(
H 2

0

H2

) (
H4

H2
− H2

H0

)1/2

. (23)
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Table 1. Comparison of values of purely kinetic and two body contributions of the ECD correlation
function and the HCD correlation function to the zeroth sum rule at various T ∗ (=kBT/ε) and
n∗ (=nσ 3) in units of ε3/mσ 3. E0 (MD) and H0 (MD) represent MD results [8] for the zeroth sum
rule calculated using the ECD correlation function and HCD correlation function, respectively.

T ∗ n∗ E0 (MD) E0 H0 (MD) H0

0.730 0.844 33.03 30.33 16.27 13.70
0.856 0.844 53.67 51.23 42.67 40.73
1.143 0.844 131.0 125.53 130.0 124.80
1.812 0.500 138.66 137.83 136.33 135.40
1.812 0.700 281.67 276.90 275.0 269.90
1.817 0.600 196.67 193.50 193.67 190.60
1.913 0.801 489.67 485.37 455.0 447.63
1.921 0.188 81.0 82.23 61.33 62.73
1.931 0.560 208.0 205.2 202.0 199.37
2.490 0.500 385.33 382.10 341.66 338.93
3.476 0.500 1079.33 1072.0 838.66 829.16
4.496 0.500 2318.33 2323.96 1623.0 1616.46

3. Results and discussion

In order to calculate the thermal conductivity from equation (23), we require numerical values
of H0, H2 and H4. We follow the Gauss quadrature method for computing the integrals involved
in H0, e and P . For the pair distribution function we have used optimized cluster theory [9]
for a fluid of particles interacting via a LJ potential. A comparison of the values obtained
for H0 (excluding triplet contribution) with those obtained using molecular dynamics (MD)
simulation [8] is presented in table 1. For the sake of completeness, we have also presented
corresponding results for E0. It can be seen from the table that there is good agreement
between simulation results and our results for H0. It is also noted that there is a significant
difference between E0 and H0 at thermodynamic states close to the triple point. Therefore, in
order to make the required changes in the results on the thermal conductivity, we use values
of H0 obtained by including the triplet contribution also and evaluated using the superposition
approximation. The values of H0 (including the triplet contribution) are given in table 2. For
H2 and H4 we use our earlier results for E2 and E4 given in [6], as the expressions are exactly
the same. The results obtained for the thermal conductivity, λ∗ (=λ(σ 2/kB)(m/ε)1/2), where
σ and ε are parameters of the LJ potential, are shown in table 2. It can be seen from the table
that the results obtained by using the Gaussian form of the memory function corresponding
to the HCD correlation function are in reasonably good agreement with the MD results of
Heyes [10, 11]. Earlier results obtained using the ECD correlation function are also shown in
brackets. It is noted that use of the appropriate expression obviously provides better results for
the thermal conductivity over a wider range of densities and temperatures. This further implies
that the zeroth sum rule of E(t) should have been calculated using the appropriate ensemble. In
fact it was already known [14] that expressions (equations (1) and (3)) are equivalent provided
appropriate ensembles are used.

4. Conclusion

In the present work expressions for the zeroth, second and fourth sum rules of the heat
current density correlation function have been derived in an appropriate ensemble. Using these
expressions for the sum rules of the HCD correlation function, the thermal conductivity of LJ



1400 S Singh et al

Table 2. Values of H0 in units of ε3/mσ 3, the thermal conductivity λ∗ and λ∗
MD in reduced units

for various densities and temperatures. The values in parentheses represent earlier results [7].

T ∗ n∗ H0 λ∗ λ∗
MD

0.73 0.844 40.35 6.191 (10.07) 5.800, 7.07a, 6.78b

1.23 0.419 48.91 1.492 (1.686) 1.670
1.26 0.500 62.08 1.600 (1.823) 1.784
1.28 0.600 81.64 2.558 (2.932) 2.690
1.16 0.844 127.14 6.007 (6.865) 6.370
1.83 0.500 152.28 1.479 (1.547) 1.670
1.81 0.600 192.46 2.298 (2.384) 2.400
1.81 0.700 254.47 3.428 (3.591) 3.880
1.90 0.801 382.72 4.338 (5.200) 5.240
2.48 0.500 329.09 1.475 (1.867) 1.869
2.50 0.600 438.84 2.221 (2.817) 2.720
2.50 0.803 763.98 4.173 (6.481) 5.360
3.46 0.600 1014.7 2.400 (3.569) 2.680
3.50 0.700 1360.4 3.175 (5.529) 4.090
3.54 0.803 1840.4 3.807 (7.749) 5.080
4.49 0.500 1531.5 1.739 (3.301) 1.860
4.53 0.600 2037.3 2.528 (4.733) 2.650
4.45 0.700 2518.2 3.437 (6.716) 4.290
4.45 0.803 3282.0 4.472 (9.897) 5.230

a Experimental values of Hanley et al [12].
b MD data of Vogelsang et al [13].

fluids has been calculated over a wide range of densities and temperatures. It is found that
the Gaussian form of the MF provides a reasonably good agreement with MD simulation data.
This also corrects our earlier results obtained using the ECD correlation function.

Appendix

The detailed expression for the second frequency sum rule of the HCD correlation function is
obtained as

H2 = 〈
J̇ e

x (0) J̇ e
x (0)

〉 +
(

e + P

n

)2
〈∑

k

∑
k′

v̇kx v̇k′ x

〉

−
(

e + P

n

) [〈
m

∑
i

∑
k

v̇i xv
2
i v̇kx

〉
+ 2m

〈∑
i

∑
k

vi x (vi · v̇i )v̇kx

〉

+
〈∑

i

∑
l

∑
j

′ ∑
k

∂ui j

∂rlβ
vlβvi x v̇kx

〉
−

〈∑
i

∑
j

′ ∑
k

∂ui j

∂rix
(vi j · vi )v̇kx

〉

+
〈∑

i

∑
j

′ ∑
k

ui j v̇i x v̇kx

〉
−

〈∑
i

∑
j

′ ∑
k

∂ui j

∂rix
(ri j · v̇i)v̇kx

〉

−
〈∑

i

∑
l

∑
j

′ ∑
k

∂2ui j

∂rix∂rlβ
(ri j · vi)vlβ v̇kx

〉]
. (A.1)
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Here, we show the evaluation of the ensemble average involved in the second term of the above
equation, which in terms of the potential can be written as〈∑

k

∑
k′

v̇kx v̇k′ x

〉
= 1

m2

∑
k

∑
k′

〈
∂V (r)

∂rkx

∂V (r)

∂rk′ x

〉
. (A.2)

Applying Yvon’s theorem, we get〈∑
k

∑
k′

v̇kx v̇k′ x

〉
= kBT

m2

∑
k

∑
k′

〈
∂2V (r)

∂rk′ x∂rkx

〉
. (A.3)

Expressing V (r) in terms of the pair potential and separating cases k = k ′ and k �= k ′, the
above equation can be written as〈∑

k

∑
k′

v̇kx v̇k′ x

〉
= kBT

m2

∑
k

∑
k′

〈
∂2ukk′

∂r 2
kx

〉
k �=k′

+
〈

∂2ukk′

∂rkx∂rk′ x

〉
k �=k′

. (A.4)

These terms cancel with each other as the second term within the pair potential approximation
is just the negative of the first term. Physically, this implies that the correlation of forces on
and arising from the particle at the same time are equally balanced within the pair potential
approximation. It may be noticed that the third, fourth, fifth, sixth and seventh terms in expres-
sion (A.1) involve correlation of the forces on two different particles at the same time. We have
found that these terms also become zero. However, the eighth term in the expression (A.1) ap-
pears different to the other terms and is discussed here. Applying Yvon’s theorem successively
and expressing V (r) in terms of the pair potential, the eighth term can be written as〈∑

i

∑
j

′ ∑
k

∂ui j

∂rix
(ri j · v̇i)v̇kx

〉
= 1

m2

∑
i

∑
j

′ ∑
k

[〈
∂3ui j

∂rix∂riα∂rkx
ri jα

〉
i �= j

+
〈

∂2ui j

∂rix∂riα

∂ri jα

∂rkx

〉
i �= j

+
〈

∂2ui j

∂rkx∂rix

∂ri jα

∂riα

〉
i �= j

+
〈
∂uil

∂rix
rilα

∂2ui j

∂rkx∂riα

〉
i �= j ,i �=l

]
.

(A.5)

Now within the pair potential approximation k could be equal either to i or to j . The two possi-
bilities lead to two terms in each ensemble average appearing in the above equation and cancel
with each other. In this way, it is noted that all terms appearing with (e + P)/n as multiplier
vanish in the evaluation of H2 and H4.
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